PUBLICATIONS

See the Google Scholar profile for the updated list.


  1. How poisoning is avoided in a step of relevance to the Haber-Bosch catalysis
    S. Perego, L. Bonati, S. Tripathi, M. Parrinello PNAS (2023), 14, 19, 14652–14664.
  2. How poisoning is avoided in a step of relevance to the Haber-Bosch catalysis
    S. Tripathi, L. Bonati, S. Perego, M. Parrinello ACS Catalysis (2024), 4, 7, 4944–4950.
  3. The role of dynamics in heterogeneous catalysis: surface diffusivity and $N_2$ decomposition on Fe(111)
    L. Bonati, D. Polino, ... , R. SchlΓΆgl, M. Parrinello PNAS (2023),
  4. Transfer learning for atomistic simulations using GNNs and kernel mean embeddings
    J. Falk, L. Bonati, P. Novelli, M. Parrinello, M. Pontil, Thirty-seventh Conference on Neural Information Processing Systems (2023).
  5. A unified framework for machine learning collective variables for enhanced sampling simulations: πš–πš•πšŒπš˜πš•πšŸπšŠπš›
    L. Bonati, E. Trizio, A. Rizzi, M. Parrinello, arXiv (2023), 2305.19980
  6. Unraveling the Crystallization Kinetics of the GeSbTe Phase Change Compound with a Machine-Learned Interatomic Potential
    O. Abou El Kheir, L. Bonati, M. Parrinello, M. Bernasconi, arXiv (2023), 2304.03109
  7. Non-linear temperature dependence of nitrogen adsorption and decomposition on Fe (111) surface
    L. Bonati, D. Polino, C. Pizzolitto, D. Biasi, R. Eckert, S. Reitmeier, R. SchlΓΆgl, M. Parrinello, ChemRxiv (2023), 10.26434/chemrxiv-2023-mlmwv
  8. Characterizing metastable states with the help of machine learning
    P. Novelli, L. Bonati, M. Pontil, M. Parrinello, J. Chem. Theory Comput. (2022), 18, 9
  9. Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water
    M. Yang, L. Bonati, D. Polino and M. Parrinello, Catalysis Today (2022), 387, 143-149
  10. Deep learning the slow modes for rare events sampling
    L. Bonati, G. Piccini and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A. (2021), 118 (44)
  11. Training collective variables for enhanced sampling via neural networks based discriminant analysis
    L. Bonati, Nuovo Cimento C (2021), 44, 125. Best communications presented at the 106th National Congress of the Italian Physical Society.
  12. The role of water in host-guest interaction
    V. Rizzi, L. Bonati, N. Ansari and M. Parrinello, Nature Communications (2021), 12, 93
  13. Data driven collective variables for enhanced sampling
    L. Bonati, V. Rizzi and M. Parrinello, Journal Physical Chemistry Letters (2020), 11, 2998-3004
  14. Ab initio phase diagram and nucleation of gallium
    H. Niu, L. Bonati, P. Piaggi and M. Parrinello, Nature Communications (2020), 11, 2654
  15. Neural networks-based variationally enhanced sampling
    L. Bonati, Y.-Y. Zhang and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A. (2019), 116 (36)
  16. Silicon Liquid Structure and Crystal Nucleation from Ab Initio Deep Metadynamics
    L. Bonati and M. Parrinello, Physical Review Letters (2018), 121, 265701